THE Alfred Stieglitz COLLECTION

OBJECT RESEARCH

Frederick H. Evans (English, 1853–1943)

York Minster: Looking from the Chapter House Interior

c. 1902 Platinum print Alfred Stieglitz Collection

AIC accession number: 1949.822

Stieglitz Estate number: N/A

Inscriptions: Blind stamped recto, on second

mount, lower right: "F H E"

Dimensions: 20.7 x 26.2 cm (image/paper); 21.2 x 26.8 cm (first mount); 25.9 x 31.2 cm (second

mount); 26.2 x 31.5 cm (third mount); 27.3 x 32.5

(fourth mount)

Print thickness: 0.267 mm

Mount: Original

X-ray fluorescence (XRF) spectrometry:

See below

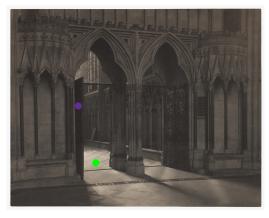
THE Alfred Stieglitz COLLECTION

OBJECT RESEARCH

X-RAY FLUORESCENCE (XRF) SPECTROMETRY

XRF spectral readings were taken from the recto of the work and from the mount when available. The elements listed below have been positively identified in the work; elements in bold have been attributed to the processing of the print.

Print: Fe, Pt, Hg


Mount: Ca, Ti, Cr, Mn, Fe, Cu, Zn, Sr, Pb

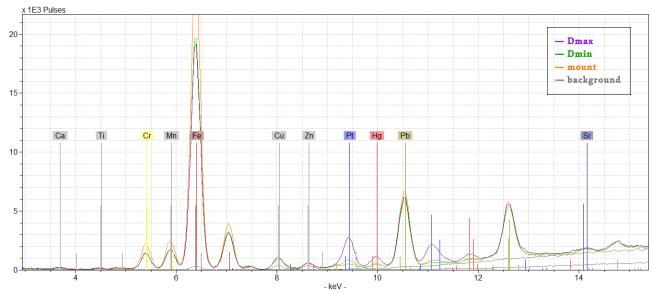

The graph below shows XRF spectra for three distinct measurement areas on the print: the darkest, maximum-density image area (Dmax, purple); the lightest, minimum-density image area (Dmin, green); and the mount, when available (orange). The background spectrum (gray) represents the characteristic contribution of the instrument itself as measured on a Teflon reference and is included in order to discount irrelevant elements from the print's signature. Elements were identified based on the presence of their characteristic peaks. Analysis was performed with a Bruker ARTAX air-path portable micro-XRF system equipped with a laser pointer, an integrated camera system, a Mo 12.5 μ m filter, and a Mo tube. Measurements were taken for 250 LT at 50 kV and 800 μ A. The spectrum below illustrates the significant peaks for this print in the energy range from 3 to 15 keV.

Figure 1. (right)
Locations of XRF measurements

Figure 2. (below)

XRF spectra from the Dmax, Dmin, mount, and background signal produced by the analyzer.

